CNEP

Centre National d'Evaluation de Photo protection

Ensemble Universitaire des Cézeaux 24 Avenue des Landais – B.P. 30234 F – 63174 AUBIERE Cedex

Téléphone: (33) 04 73 40 53 00 Télécopie: (33) 04 73 27 59 69 Web: http://www.cnep-ubp.com e-mail: cnep@cnep-ubp.com

CERTIFICATION

The Centre National d'Evaluation de Photoprotection [CNEP] certifies that the film made and supplied by SYMPHONY Environmental Ltd, Borehamwood, Hertfordshire WD6 1JD, England and referenced as containing 1 % Oxo-Biodegradable Additive DG 12.08, satisfied the 4 requirements of the schedule of conditions laid down under the Protocol for the Evaluation of the Abiotic Oxidability of Oxo-Biodegradable films, designed as AFNOR Agreement AC T51-808.

Under controlled laboratory experimental conditions, it was proved:

- 1. That the film was not oxidized significantly when maintained in an aerated oven at 60° C during 432 hours (which guarantees a minimum one year lifetime in storage and use in indoor conditions without any mechanical detriment).
- 2. That the film was photo-oxidized in SEPAP 12-24 at the extent defined in the Protocol (which guarantees that the film accidentally scattered into the environment, should be fragmented after approximately 3 months of exposure to sunlight in European environment):

$$\Delta$$
 abs 1710 cm⁻¹ = 1.47 $\frac{x}{100}$ (after 100 hours of exposure in SEPAP 12-24, x being the film thickness in microns)

3. That the film was oxidized at the extent defined in the Protocol, after pre-oxidation in SEPAP 12-24 and in a 300 hrs thermo-oxidation at 60° C, that guarantees that the film abiotically degraded after 3 months exposure to sunlight and a 2-3 years in soil, has acquired a biodegradability which could be assessed using the Protocol of AC T51-808:

$$\Delta$$
 abs 1710 cm⁻¹ = 3.7 $\frac{x}{100}$ after 100 hours of preexposure in SEPAP 12-24 and 312 hours of thermooxidation at 60°C.

4. That the oxidized particle ($\triangle abs\ 1715\ cm^{-1} = 3.75\ \frac{x}{100}$ were the sole carbon source for

Rhodococcus rhodochrous to account for the development of that microorganisms population in an aqueous medium containing only oligo elements.

The cell development showed also that the type of metal stearate used as pro-oxidant and the oxidized groups formed from the PE matrix was not presenting any toxicity towards the *Rhodococcus rhodochrous*, a microorganism living in natural media.

At Aubière, April 28th 2015

Prof. Dr. Jacques LEMAIRE Former Head of CNEP (1986-2008),

In charge of Research on oxobiodegradation.

Prof Dr. Jacques LACOSTE, Head of CNEP.

